spacypdfreader.spacypdfreader
pdf_reader(pdf_path, nlp, pdf_parser=pdfminer.parser, verbose=False, n_processes=None, page_range=None, **kwargs)
Convert a PDF document to a spaCy Doc object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pdf_path |
str
|
Path to a PDF file. |
required |
nlp |
Language
|
A spaCy Language object with a loaded pipeline. For example
|
required |
pdf_parser |
Callable
|
The parser to convert PDF file to text. Read the docs for more details. Defaults to pdfminer.parser. |
parser
|
verbose |
bool
|
If True details will be printed to the terminal. By default, False. |
False
|
n_processes |
Optional[int]
|
The number of process to use for multi-processing. If |
None
|
page_range |
Optional[Iterable[int]]
|
The page range of the PDF to convert from PDF to text. Must be
one digit based indexing (e.g. the first page of the PDF is page 1, as
opposed to page 0). If |
None
|
**kwargs |
Any
|
Arbitrary keyword arguments to pass to the underlying functions
that extract text from the PDFs. If using pdfminer (the default)
|
{}
|
Returns:
Type | Description |
---|---|
Doc
|
A spacy Doc object with the custom extensions. |
Examples:
By default pdfminer is used to extract text from the PDF.
>>> import spacy
>>> from spacypdfreader import pdf_reader
>>>
>>> nlp = spacy.load("en_core_web_sm")
>>> doc = pdf_reader("tests/data/test_pdf_01.pdf", nlp)
To be more explicit import pdfminer.parser
and pass it into the
pdf_reader
function.
>>> import spacy
>>> from spacypdfreader import pdf_reader
>>> from spacypdfreader.parsers import pdfminer
>>>
>>> nlp = spacy.load("en_core_web_sm")
>>> doc = pdf_reader("tests/data/test_pdf_01.pdf", nlp, pdfminer.parser)
Alternative parsers can be used as well such as pytesseract.
>>> import spacy
>>> from spacypdfreader import pdf_reader
>>> from spacypdfreader.parsers import pytesseract
>>>
>>> nlp = spacy.load("en_core_web_sm")
>>> doc = pdf_reader("tests/data/test_pdf_01.pdf", nlp, pytesseract.parser)
For more fine tuning you can pass in additional parameters to pytesseract.
>>> import spacy
>>> from spacypdfreader import pdf_reader
>>> from spacypdfreader.parsers import pytesseract
>>>
>>> nlp = spacy.load("en_core_web_sm")
>>> params = {"nice": 1}
>>> doc = pdf_reader("tests/data/test_pdf_01.pdf", nlp, pytesseract.parser, **params)
You can speed up spacypdfreader by using multiple processes.
>>> import spacy
>>> from spacypdfreader import pdf_reader
>>> from spacypdfreader.parsers import pytesseract
>>>
>>> nlp = spacy.load("en_core_web_sm")
>>> doc = pdf_reader("tests/data/test_pdf_01.pdf", nlp, pytesseract.parser, n_processes=4)
To extract a specific range of pages, use the page_range
argument.
>>> import spacy
>>> from spacypdfreader import pdf_reader
>>> from spacypdfreader.parsers import pytesseract
>>>
>>> nlp = spacy.load("en_core_web_sm")
>>> doc = pdf_reader("tests/data/test_pdf_01.pdf", nlp, pytesseract.parser, n_processes=4, page_range=(2, 3))
Source code in spacypdfreader/spacypdfreader.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|